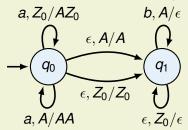
Übung 8: Turingmaschinen

Theoretische Informatik Sommersemester 2013

Markus Kaiser

June 17, 2013


Definition (Kellerautomat)

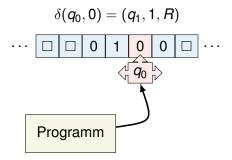
Ein PDA (Push-Down-Automaton) ist ein Tupel $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ aus einer/einem

■ Übergangsfunktion $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \mapsto P(Q \times \Gamma^*)$

Beispiel

PDA akzeptierend mit leerem Keller zu $L = \{a^n b^n \mid n \in \mathbb{N}\}.$

Definition (Turingmaschine)

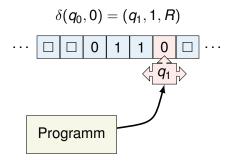

Eine deterministische Turingmaschine (TM) ist ein Tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ aus einer/einem

- endlichen Menge von Zuständen Q
- endlichen Eingabealphabet Σ
- endlichen Bandalphabet Γ mit $\Sigma \subset \Gamma$
- Übergangsfunktion $\delta: Q \times \Gamma \mapsto Q \times \Gamma \times \{L, R, N\}$
- Startzustand $q_0 \in Q$
- Leerzeichen $\square \in \Gamma \setminus \Sigma$
- Menge von Endzuständen $F \subseteq Q$

Definition (Turingmaschine)

Eine deterministische Turingmaschine (TM) ist ein Tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ aus einer/einem

■ Übergangsfunktion $\delta: Q \times \Gamma \mapsto Q \times \Gamma \times \{L, R, N\}$



Definition (Turingmaschine)

Eine deterministische Turingmaschine (TM) ist ein Tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ aus einer/einem

■ Übergangsfunktion $\delta: Q \times \Gamma \mapsto Q \times \Gamma \times \{L, R, N\}$

Definition (Konfiguration)

Eine Konfiguration ist ein Tripel $(\alpha, q, \beta) \in \Gamma^* \times Q \times \Gamma^*$. Dies modelliert eine TM mit:

- Bandinhalt ... $\square \alpha \beta \square$...
- Zustand q
- Kopf auf dem ersten Zeichen von $\beta\Box$

Die Startkonfiguration bei Eingabe $w \in \Sigma^*$ ist (ϵ, q_0, w) .

Definition (Konfiguration)

Eine Konfiguration ist ein Tripel $(\alpha, q, \beta) \in \Gamma^* \times Q \times \Gamma^*$. Dies modelliert eine TM mit:

- Bandinhalt ... $\square \alpha \beta \square$...
- Zustand q
- Kopf auf dem ersten Zeichen von $\beta\Box$

Die Startkonfiguration bei Eingabe $w \in \Sigma^*$ ist (ϵ, q_0, w) .

Definition (Akzeptanz)

Eine TM M akzeptiert die Sprache

$$L(M) = \{ w \in \Sigma^* \mid \exists \mathbf{f} \in \mathbf{F}, \alpha, \beta \in \Gamma^*.(\epsilon, \mathbf{q}_0, w) \to_M^* (\alpha, \mathbf{f}, \beta) \}$$

Definition (Nichtdeterministische Turingmaschine)

Eine nichtdeterministische Turingmaschine (TM) ist ein Tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, \square, F)$ aus einer/einem

- Übergangsfunktion $\delta: Q \times \Gamma \mapsto \mathcal{P}(Q \times \Gamma \times \{L, R, N\})$
-

Satz

Zu jeder nichtdeterministischen TM N gibt es eine deterministische TM M mit L(N) = L(M).