Übung 8: Turingmaschinen

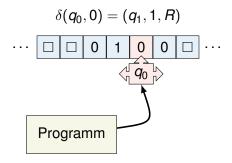
Theoretische Informatik Sommersemester 2013

Markus Kaiser

July 11, 2013

Definition (Turingmaschine)

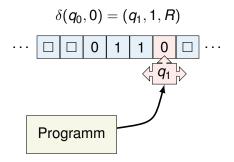
Eine deterministische Turingmaschine (TM) ist ein Tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ aus einer/einem


- endlichen Menge von Zuständen Q
- endlichen Eingabealphabet Σ
- endlichen Bandalphabet Γ mit $\Sigma \subset \Gamma$
- Übergangsfunktion $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, N\}$
- Startzustand $q_0 \in Q$
- Leerzeichen $\square \in \Gamma \setminus \Sigma$
- Menge von Endzuständen F ⊆ Q

Definition (Turingmaschine)

Eine deterministische Turingmaschine (TM) ist ein Tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ aus einer/einem

■ Übergangsfunktion $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, N\}$



Definition (Turingmaschine)

Eine deterministische Turingmaschine (TM) ist ein Tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ aus einer/einem

■ Übergangsfunktion $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, N\}$

Definition (Nichtdeterministische Turingmaschine)

Eine nichtdeterministische Turingmaschine (TM) ist ein Tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, \square, F)$ aus einer/einem

- ...
- Übergangsfunktion $\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R, N\})$
- **...**

Satz

Zu jeder nichtdeterministischen TM N gibt es eine deterministische TM M mit L(N) = L(M).