Übung 4: Aussagenlogik II

Diskrete Strukturen im Wintersemester 2013/2014

Markus Kaiser

12. November 2013

Äquivalenzregeln

Identität
$$F \wedge 1 \equiv F$$
 $F \vee 0 \equiv F$
Dominanz $F \vee 1 \equiv 1$ $F \wedge 0 \equiv F$
Idempotenz $F \vee F \equiv F$ $F \wedge F \equiv F$
Doppelte Negation $\neg \neg F \equiv F$
Triviale Tautologie $F \vee \neg F \equiv 1$
Triviale Kontradiktion $F \wedge \neg F \equiv 0$

Kommutativität
$$F \lor G \equiv G \lor F$$

 $F \land G \equiv G \land F$
Assoziativität $(F \lor G) \lor H \equiv F \lor (G \lor H)$
 $(F \land G) \land H \equiv F \land (G \land H)$
Distributivität $F \lor (G \land H) \equiv (F \lor G) \land (F \lor H)$
 $F \land (G \lor H) \equiv (F \land G) \lor (F \land H)$
De Morgan $\neg (F \land G) \equiv \neg F \lor \neg G$
 $\neg (F \lor G) \equiv \neg F \land \neg G$

Implikation
$$F \to G \equiv \neg F \lor G$$

Bikonditional $F \leftrightarrow G \equiv (F \to G) \land (G \to F)$

Literale und Klauseln

Definition (Literal)

Ein Literal ist eine Variable $v \in V$ oder die Negation $\neg v$ einer Variable.

Definition (Klausel)

Eine Klausel verknüpft mehrere Literale mit einem assoziativen Operator.

Beispiel

Seien a, $\neg b$, c Literale. Dann sind

- $a \land \neg b \land c$
- $a \lor \neg b \lor c$

Klauseln.

Definition (Disjunktive Normalform)

Eine DNF-Klausel ist eine Konjunktion von Literalen L_i . Eine Formel F, ist in Disjunktiver Normalform, wenn sie eine Disjunktion von DNF-Klauseln ist.

$$F := \bigvee \bigwedge_{i} L_{i}$$

Ausnahme: false ist auch in DNF

Beispiel

F ist in DNF.

$$F := \underbrace{(a \land b \land \neg c)}_{\mathsf{DNF-Klausel}} \lor \underbrace{(\neg b \land c)}_{\mathsf{DNF-Klausel}} \lor \underbrace{(\neg a \land b \land \neg c)}_{\mathsf{DNF-Klausel}}$$

Definition (Konjunktive Normalform)

Eine KNF-Klausel ist eine Disjunktion von Literalen L_i . Eine Formel F, ist in Konjunktiver Normalform, wenn sie eine Konjunktion von KNF-Klauseln ist.

$$F := \bigwedge \bigvee_{i} L_{i}$$

Ausnahme: true ist auch in KNF

Beispiel

F ist in KNF.

$$F := (\neg a \lor b) \land (\neg b \lor c) \land (a \lor b \lor \neg c)$$

$$\mathsf{KNF}\mathsf{-Klausel} \qquad \mathsf{KNF}\mathsf{-Klausel}$$

Konstruktion der NF

- Jede nicht-triviale Formel ist in DNF und KNF umwandelbar
- Durch Äquivalenzumformungen berechenbar (exponentiell groß!)
- Oder: Konstruktion mit Wahrheitstabellen

Normalformen aus Wahrheitstabellen

Gegeben eine Formel F und ihre Wahrheitstabelle

- DNF
 - Betrachte Zeilen mit Eintrag 1
 - 2 Bilde Konjunktion aus der Belegung
 - 3 Bilde Disjunktion aller erhaltenen Klauseln
- KNF
 - Betrachte Zeilen mit Eintrag 0
 - 2 Bilde Disjunktion aus der Negation der Belegung
 - 3 Bilde Konjunktion aller erhaltenen Klauseln

Beispiel

Gegeben eine Formel F mit folgender Semantik

а	b	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

F dargestellt in

$$(\neg a \land b \land c) \lor (a \land \neg b) \lor (a \land b \land \neg c)$$

$$(a \lor b) \land (\neg a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor \neg c)$$

Mengendarstellung der KNF

Eine Formel $F = \bigwedge \bigvee L_i$ in KNF kann in einer Mengendarstellung repräsentiert werden.

Klauseln werden durch Mengen von Literalen dargestellt

$$\{a, \neg b, c\}$$
 steht für $(a \lor \neg b \lor c)$

KNF-Formeln sind Mengen von Klauseln

$$\{\{\neg a\}\ , \{a, \neg b, c\}\}\$$
 steht für $\neg a \land (a \lor \neg b \lor c)$

lacksquare \varnothing steht für true, $\{\varnothing\}$ für false

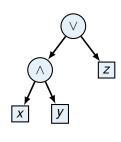
Beispiel

Gegeben $F := (a \lor b) \land (\neg a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor \neg c)$ in KNF.

$$\{\{a,b\}, \{\neg a,b,\neg c\}, \{\neg a,\neg b,\neg c\}\}$$

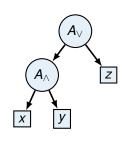
- Weise jedem inneren Knoten eine Variable zu
- Variablen sind abhängig von ihren Kindern
- 3 Berechne kleine KNFs und führe diese zusammen

$$(x \wedge y) \vee z \equiv \\ \wedge (A_{\vee} \leftrightarrow A_{\wedge} \vee z) \\ \wedge (A_{\wedge} \leftrightarrow x \wedge y) \equiv \\ \\ \wedge (A_{\vee} \vee \neg A_{\wedge}) \wedge (A_{\vee} \vee \neg z) \\ \wedge (\neg A_{\vee} \vee A_{\wedge} \vee z) \\ \wedge (\neg A_{\wedge} \vee x) \wedge (\neg A_{\wedge} \vee y) \\ \\ \wedge (A_{\vee} \vee \neg A_{\wedge} \vee x) \wedge (\neg A_{\wedge} \vee y)$$



- 1 Weise jedem inneren Knoten eine Variable zu
- Variablen sind abhängig von ihren Kinderr
- 3 Berechne kleine KNFs und führe diese zusammen

$$(x \wedge y) \vee z \equiv \\ \wedge (A_{\vee} \leftrightarrow A_{\wedge} \vee z) \\ \wedge (A_{\wedge} \leftrightarrow x \wedge y) \equiv \\ \\ \wedge (A_{\vee} \vee \neg A_{\wedge}) \wedge (A_{\vee} \vee \neg z) \\ \wedge (\neg A_{\vee} \vee A_{\wedge} \vee z) \\ \wedge (\neg A_{\wedge} \vee x) \wedge (\neg A_{\wedge} \vee y) \\ \wedge (A_{\wedge} \vee \neg x \vee \neg y)$$



- 1 Weise jedem inneren Knoten eine Variable zu
- Variablen sind abhängig von ihren Kindern
- Berechne kleine KNFs und führe diese zusammen

$$(x \wedge y) \vee z \equiv A_{\vee}$$

$$\wedge (A_{\vee} \leftrightarrow A_{\wedge} \vee z)$$

$$\wedge (A_{\wedge} \leftrightarrow x \wedge y)$$

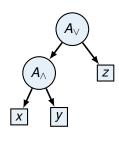
$$\equiv$$

$$\wedge (A_{\vee} \vee \neg A_{\wedge}) \wedge (A_{\vee} \vee \neg z)$$

$$\wedge (\neg A_{\vee} \vee A_{\wedge} \vee z)$$

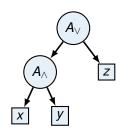
$$\wedge (\neg A_{\wedge} \vee x) \wedge (\neg A_{\wedge} \vee y)$$

$$\wedge (A_{\wedge} \vee \neg x \vee \neg y)$$



- Weise jedem inneren Knoten eine Variable zu
- Variablen sind abhängig von ihren Kindern
- 3 Berechne kleine KNFs und führe diese zusammen

$$(x \wedge y) \vee z \equiv A_{\vee} \\ \wedge (A_{\vee} \leftrightarrow A_{\wedge} \vee z) \\ \wedge (A_{\wedge} \leftrightarrow x \wedge y) \\ \equiv A_{\vee} \\ \wedge (A_{\vee} \vee \neg A_{\wedge}) \wedge (A_{\vee} \vee \neg z) \\ \wedge (\neg A_{\vee} \vee A_{\wedge} \vee z) \\ \wedge (\neg A_{\wedge} \vee x) \wedge (\neg A_{\wedge} \vee y) \\ \wedge (A_{\wedge} \vee \neg x \vee \neg y)$$



Definition (DPLL-Belegung)

Sei F eine Formel in KNF und p eine Variable von F. Dann bezeichnet $F[p \setminus true]$ die Formel, die entsteht, wenn jedes Vorkommnis von p in F durch true ersetzt und vereinfacht wird.

DPLL

Gegeben eine Formel F in KNF

- Wenn F = true dann antworte "erfüllbar"
- Wenn F = false dann antworte "unerfüllbar"
- Sonst
 - 1 Wähle eine Variable p in F
 - 2 Prüfe ob $F[p \mid true]$ oder $F[p \mid false]$ erfüllbar
- Schlaue Wahl der Variable beschleunigt Ausführung
- Wähle Variablen die einzeln stehen (One-Literal-Rule)