Sommersemester 2014 Übungsblatt 8 2. Juni 2014

Theoretische Informatik

Abgabetermin: 18. Juni 2014, 10 Uhr in die THEO Briefkästen

Hausaufgabe 1 (4 Punkte)

Sei Σ eine nicht leere Zeichenmenge.

- 1. Sei L die Menge aller Wörter über Σ mit geradzahliger Länge. Geben Sie ein Verfahren an, das für einen beliebigen DFA $A = (Q, \Sigma, \delta, q_0, F)$ entscheidet, ob jedes (oder nicht jedes) von A akzeptierte Wort eine ungerade Länge besitzt.
- 2. Sei E(x) ein Eigenschaft für Wörter x über Σ , so dass $K = \{x ; E(x)\}$ eine reguläre Sprache ist. Verallgemeinern Sie Ihr obiges Verfahren so, dass es für einen beliebigen DFA $A = (Q, \Sigma, \delta, q_0, F)$ entscheidet, ob jedes (oder nicht jedes) von A akzeptierte Wort x die Eigenschaft E besitzt.

Hausaufgabe 2 (4 Punkte)

Konstruieren Sie für die folgenden Sprachen jeweils einen Kellerautomaten, der die Sprache erkennt.

- (a) $L_1 = \{a^n b^{3n} ; n \in \mathbb{N}_0\}$
- (b) $L_2 = \{wc\widehat{w} ; w \in \Sigma^*\}$ wobei \widehat{w} das zu w gespiegelte Wort und $\Sigma = \{a, b\}$ ist.
- (c) $L_3 = \{w\widehat{w} ; w \in \Sigma^*\}$ wobei \widehat{w} das zu w gespiegelte Wort und $\Sigma = \{a, b\}$ ist.

Geben Sie – wenn möglich – einen deterministischen Kellerautomaten an.

Hausaufgabe 3 (4 Punkte)

Seien $L = \{a^i b^j c^k \, ; \, i = j \text{ oder } j = k \}$ und $L' := \overline{L} \cap a^* b^* c^*.$

- 1. Zeigen Sie mit Hilfe von Ogden's Lemma, dass L' nicht kontextfrei ist.
- 2. Zeigen Sie, dass L nicht deterministisch kontextfrei ist.

Hausaufgabe 4 (4 Punkte)

Seien $L_1, L_2 \subseteq \Sigma^*$. Zeigen Sie:

Wenn L_1 kontextfrei ist und L_2 regulär, dann ist $L_1 \cap L_2$ kontextfrei.

Hinweis: Konstruieren sie aus einem PDA und einem DFA/NFA einen neuen PDA.

Hausaufgabe 5 (4 Punkte)

Zeigen Sie, dass es für jeden Kellerautomaten einen äquivalenten Kellerautomaten mit nur einem Zustand gibt.

Zusatzaufgabe 5 (wird nicht korrigiert)

Ein 2-Kellerautomat $K = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, Z'_0, F)$ ist ein Kellerautomat, der über einen zweiten Keller verfügt. Der zweite Keller wird mit Z'_0 initialisiert. Die Übergangsfunktion $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \times \Gamma \to \mathcal{P}_e(Q \times \Gamma^* \times \Gamma^*)$ beschreibt die Vorgehensweise des 2-KA wie folgt $(\mathcal{P}_e$ bezeichnet die Menge aller endlichen Teilmengen): Liest der 2-KA im Zustand q die Eingabe b (auch $b = \epsilon$ ist möglich), sind Z_1, Z_2 die obersten Zeichen der beiden Keller und gilt $(q', \alpha_1, \alpha_2) \in \delta(q, b, Z_1, Z_2)$, dann kann der 2-KA in den Zustand q' übergehen und hierbei Z_1 durch α_1 und Z_2 durch α_2 ersetzen.

Zeigen Sie: Jede (deterministische) Turingmaschine $T=(Q,\Sigma,\Gamma,\delta,q_0,\Box,F)$ kann durch einen 2-Kellerautomaten $K=(Q',\Sigma,\Gamma',\delta',q_0',Z_0,Z_0',F')$ simuliert werden.

<u>Hinweis</u>: Bei einer Simulation müssen die Berechnungen bzw. Konfigurationsänderungen zweier Machinen einander zugeordnet werden können und die akzeptierten Sprachen müssen gleich sein.

Hinweis: Die Vorbereitungsaufgaben bereiten die Tutoraufgaben vor und werden in der Zentralübung unterstützt. Tutoraufgaben werden in den Übungsgruppen bearbeitet. Hausaufgaben sollen selbstständig bearbeitet und zur Korrektur und Bewertung abgegeben werden.

Vorbereitung 1

Beantworten Sie kurz die folgenden Fragen:

- 1. Gibt es eine Turingmaschine, die sich nie mehr als vier Schritte vom Startzustand entfernt und eine unendliche Sprache akzeptiert? Begründung!
- 2. Welche Sprachen lassen sich mit Turingmaschinen, die ihren Kopf immer nur nach rechts bewegen, erkennen?
- 3. Gibt es für jede Turingmaschine T eine Turingmaschine T' mit nur einem Zustand, die die Sprache von T akzeptiert?

Vorbereitung 2

Wir konstruieren eine Turingmaschine $T = (Q, \Sigma, \Gamma, \delta, q_0, \square, F)$, mit $\Sigma = \{|\}$ wie folgt.

Zu Beginn steht, außer Leerzeichen, nur eine Sequenz von Strichen auf dem Band. Der Schreib-/Lesekopf der Turing-Maschine steht auf dem ersten Strich (von links gesehen). Die Berechnung erfolgt, indem jeweils der erste Strich (von links gesehen) durch ein Hilfszeichen X ersetzt wird und zusätzlich ein Hilfszeichen X an das linke Ende geschrieben wird. Zum Schluß werden alle Hilfszeichen von rechts nach links durch Striche ersetzt.

Sei $T = (Q, \Sigma, \Gamma, \delta, q_0, \square, F)$ mit $Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{|\}, \Gamma = \{|, X, \square\}$ und $F = \{q_3\}$. Die Übergangsfunktion δ entnehmen wir der folgenden Tabelle:

Übergang	Kommentar
$\delta(q_0,) = (q_1, X, L)$	ersetze erstes $ $ durch Hilfszeichen X
$\delta(q_1, X) = (q_1, X, L)$	gehe nach links zum ersten X
$\delta(q_1, \square) = (q_0, X, R)$	füge zusätzliches Hilfszeichen X am Anfang ein
$\delta(q_0, X) = (q_0, X, R)$	gehe nach rechts zum ersten
$\delta(q_0, \square) = (q_2, \square, L)$	alle abgearbeitet
$\delta(q_2, X) = (q_2, , L)$	ersetze X durch
$\delta(q_2, \square) = (q_3, \square, R)$	alle X durch ersetzt, Stopp

Spezifizieren Sie möglichst knapp den Bandinhalt in Abhängigkeit der Eingabe, wenn die Turingmaschine anhält.

Vorbereitung 3

Beweisen oder widerlegen Sie:

Für jede Turingmaschine T gibt es eine Turingmaschine T' mit nur einem Zustand, die die Sprache von T akzeptiert.

Vorbereitung 4

Seien $\Sigma = \{a_1, a_2, \dots, a_n\}$ ein beliebiges n-elementiges Alphabet und $\Sigma' = \Sigma \cup \{\#\}$.

Geben Sie eine Turingmaschine $M=(Q,\Sigma',\Gamma,\delta,q_0,\Box,F)$ mit höchstens 5 Zuständen an, die bei leerer Eingabe das Alphabet Σ in der Form $\#a_1\#a_2\ldots\#a_n$ auf das Band schreibt und mit dem Kopf auf dem letzten, rechtsstehenden Zeichen der Ausgabe anhält.

Tutoraufgabe 1

Geben Sie eine deterministische Turingmaschine $T = (Q, \Sigma, \Gamma, \delta, q_0, \square, F)$ an, mit $\Sigma = \{|\},$ die eine eingegebene Strichzahl verdoppelt.

Begründen Sie, warum Ihre Turingmaschine die Spezifikation erfüllt.

Tutoraufgabe 2

Sei $\Sigma = \{0, 1\}$. Wir bezeichnen mit \overline{w} die Negation eines Wortes $w \in \{0, 1\}^*$, d.h. alle Nullen werden durch Einsen ersetzt und umgekehrt.

- 1. Geben Sie eine deterministische Turingmaschine an, die für ein Eingabewort $w \in \Sigma^*$ folgende Berechnung durchführt: Am Ende der Berechnung steht auf dem Band das Wort $w\overline{w}$ und der Kopf steht in einem Endzustand auf dem ersten Zeichen dieses Wortes.
 - Kommentieren Sie ihre Konstruktion durch eine informelle Beschreibung Ihrer Lösungsidee.
- 2. Geben Sie nun eine Turingmaschine an, die die Sprache $L = \{w\overline{w}; w \in \Sigma^*\}$ akzeptiert. Kommentieren Sie wiederum ihre Konstruktion durch eine informelle Beschreibung Ihrer Lösungsidee.

Tutoraufgabe 3

Sei Σ ein Alphabet. Geben Sie f''ur die kontextsensitive Sprache $L = \{ww; w \in \Sigma^*\}$ einen linear beschränkten Automaten M an, der L akzeptiert.